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Abstract
The ‘rigid-unit mode’ (RUM) model requires unit blocks, in our case tetrahedra
of SiO4 groups, to be rigid within first order of the displacements of the oxygen
ions. The wavevectors of the lattice vibrations, which obey this rigidity, are
determined analytically. Lattices with inversion symmetry yield generically
surfaces of RUMs in reciprocal space, whereas lattices without this symmetry
yield generically lines of RUMs. Only in exceptional cases such as in β-
quartz does a surface of RUMs appear, if inversion symmetry is lacking. The
occurrence of planes and bending surfaces, and straight and bent lines, is
discussed. Explicit calculations are performed for five polymorphs of SiO2

crystals.

1. Introduction

Displacements of ions in a solid, which alter the distances between neighbouring ions, produce
much stronger forces than those which vary only the angles between adjacent bonds. This
has led to the idea of rigid-unit modes (RUMs), that is, distortions, which do not change the
distances between the ions in a unit to first order in the displacements. Typical examples are
crystals in which silicon or aluminium ions are surrounded by four oxygen ions. The units
of the tetrahedra of these oxygens are required to be rigid. Each oxygen ion belongs to two
tetrahedra.

There have been extensive numerical studies of RUMs of such crystals by Dove, Giddy,
Hammonds and Heine et al. For a review see [1]. More recent presentations of RUMs in
framework aluminosilicates can be found on the internet [2] and in the review [3]. These
rigid-unit modes do not only signal soft-phonon modes, but they are also at the origin of a
large number of displacive phase transitions. The first one considered was the transformation
between α- and β-quartz [4]. Recent applications of RUM modelling include basic ideas for
the development of new zeolites [5]. These zeolites are important catalysts in petrochemical
refineries due to their high internal surface areas and molecular sieving properties. Another
application deals with the flexibility of framework structures, which due to RUMs allows cation
substitutions with a minimum of energy cost, since the geometric stress associated with the
substitution is absorbed by rigid-unit-type motion of the polyhedra near the substitution site [6].
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Basic to the numerical calculations is the computer program CRUSH [7, 8]. In this program
the rigid tetrahedra are assumed to be individual molecules, and harmonic forces are added
between the two ‘split’ atoms, which should be one. It calculates the phonon frequencies ω j,q

for given wavevector q, which allow one to determine a pseudo-intensity

I (q) =
∑

j

1

ω2
j,q + �

(1)

evaluated for small �. For a wavevector q with n RUMs this quantity approaches I (q) ≈ n/�.
In this way the authors determined RUMs for a large number of crystals.

There are also some analytic calculations along planes and lines of symmetry. Such a
calculation has been performed by Vallade et al [9] for β-quartz. The concept of RUMs itself
goes back to Megaw [10] and Grimm and Dorner [4].

The present paper reports analytic calculations of RUMs. The variation of the lengths of
the bonds of the units is calculated as a function of the displacements of the O ions. Since the
number of coordinates of the displacements is the same as the number of lengths of bonds,
namely six times the number of tetrahedra, one has to find non-trivial solutions of linear
homogeneous equations, which means the determination of the zeros of the determinant of the
corresponding coefficient matrix. In reciprocal space these reduce to 6nt equations, where nt is
the number of tetrahedra in the unit cell of the crystal. So one has to calculate the determinant
of a 6nt × 6nt matrix, where the vector q of the oscillating wave of displacements and the basis
vectors ak of the lattice enter only through the three complex phase factors

ρk = eiak ·q. (2)

We will show that for a crystal with inversion symmetry the determinant of an appropriately
defined matrix is real for any given ρs. Thus there is only one condition to be met with three
unknowns, which in general defines the surfaces of the RUMs in reciprocal space. If inversion
symmetry is lacking, then the determinant is complex, and two conditions have to be met for
the RUMs: both the real and the imaginary part have to vanish. Correspondingly, RUMs are
found only at the intersections of the zeros of the real and the imaginary part. Thus generically
one obtains in these cases lines of RUMs, but not surfaces. It may happen, however, that both
the real and the imaginary part have a factor in common, so that RUMs extend over a whole
surface. An example is β-quartz, where a whole plane of RUMs, besides lines of RUMs, is
found. Although in many cases the RUMs are located on planes or lines, there are also cases
where a surface can bend, as was already found for HP (hexagonal primitive) tridymite by Dove
et al [11]. Here (equation (53)) the analytic expression for the surface is given. Lines of RUMs
may lie in planes. But there are also non-planar lines. Such a line has been found in α-quartz
(figure 6).

The general theory is given in section 2. Some remarks on planes and bending surfaces,
and straight and bent lines are given in section 2.1. The basic equations will be derived
in section 2.2. In particular the coefficient matrix for the determinant will be given. In
section 2.3 the consequences of inversion symmetry will be considered. It will be shown that the
determinant multiplied by appropriate powers of ρk is real for lattices with inversion symmetry.
This section is concluded with a few remarks on the actual algebraic calculation in section 2.4.

This theory is applied to five polymorphs of SiO2 in section 3: first the crystals with
inversion symmetry β-cristobalite and HP tridymite are considered, then the RUMs for the
crystals without inversion symmetry β-quartz, α-cristobalite, and α-quartz are calculated.
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2. General idea

2.1. Planes and bending surfaces, and straight and bent lines

The determinant (or its real and imaginary part) is factorized after calculation. The factorization
procedure of algebraic computer programs is very useful, since the zeros of the various factors
yield different locations of the RUMs. Often factors of the form

ρ
l1
1 ρ

l2
2 ρ

l3
3 ∓ ρ

l′1
1 ρ

l′2
2 ρ

l′3
3 (3)

with integer powers li and l ′i appear. Then the determinant (or its real or imaginary part)
vanishes along the plane

[(l1 − l ′1)a1 + (l2 − l ′2)a2 + (l3 − l ′3)a3] · q =
{

2mπ

(2m + 1)π
(4)

with integer m. If we introduce the reciprocal wavevectors b defined by

ai · b j = 2πδi j (5)

and represent the wavevector q in this basis,

q =
∑

i

ξi bi = ξb1 + ηb2 + ζb3, ai · q = 2πξi , (6)

then the plane is given by

(l1 − l ′1)ξ + (l2 − l ′2)η + (l3 − l ′3)ζ =
{

m
m + 1

2 .
(7)

But there are also cases where the factor has a more complex form, which yields a winding
surface or a winding line. Such a surface appears in HP tridymite, equation (53). Lines of
RUMs are planar, if they come from a factor of type (3) of the real or imaginary part. If the
factors of both the real and the imaginary part are of type (3) then the line of RUMs is straight.
If none of these factors are of this type, then the lines are generically non-planar, as in α-quartz
(figure 6).

2.2. Basic equations

Suppose the oxygens are located at

rn,i = Rn,i + un,i , (8)

Rn,i =
∑

α

(nα + ciα)aα = A(n + ci ) (9)

with the equilibrium positions R and the displacements u. The integers nα number the
elementary cells. The atomic coordinates of the 2nt oxygens in the elementary cell are denoted
by ci,α . The operator A maps the unit cube onto the elementary cell. It performs the similarity
transformation

Ax =
∑

α

aα(eα · x), (10)

from the orthogonal unit vectors eα to the lattice vectors aα . Thus the components of x and
n + c expand the vectors in the basis {a}. The distance between the oxygens at the corners of
the tetrahedra should be fixed to first order in the displacements. Thus for such a pair of atoms
at rn+m,i and rn+m′, j with fixed distance one obtains the condition

(Rn+m,i − Rn+m′, j ) · (un+m,i − un+m′, j ) = 0. (11)

3
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The distance vector reads

Rn+m,i − Rn+m′, j = Adm−m′,i, j , (12)

dm−m′,i, j = ci + m − m′ − c j . (13)

Thus equation (11) can be rewritten

Adm−m′,i, j · (un+m,i − un+m′, j ) = dm−m′,i, j · (ATun+m,i − ATun+m′, j )

= dm−m′,i, j · (ũn+m,i − ũn+m′, j ) = 0, (14)

where AT is the transposed operator of A,

ũ := ATu =
∑

α

eα(aα · u). (15)

The operator AT allows one to express

ATbα = 2πeα, ATq = 2πξ . (16)

Since the vector d is independent of n, the Fourier transform of equation (14) yields

dm−m′,i, j · (ρmũi (q) − ρm′ ũ j (q)) = 0 (17)

with

ρm =
3∏

k=1

ρ
mk
k , (18)

ũi (q) =
∑

n

exp

(
−i

∑

k

nkak · q
)

ũn,i . (19)

Equation (17) constitutes a set of linear homogeneous equations for the displacements u. We are
looking for those wavevectors q which allow non-trivial solutions of the set of equations (17).
Note that A has disappeared from equation (17). Thus the lattice parameters of the unit cell
do not enter into the calculation. Nevertheless, inversion symmetry and rotational symmetries
play still a role. To facilitate notation the 6nt edges of the nt tetrahedra are numbered by e. The
edge e connects the vertices ie and je. To this edge the triples me, m′

e and the distance vector
de = dme−m′

e,ie, je are associated. Then equation (17) can be written as

�e := de · (ρme ũie (q) − ρm′
e
ũ je(q)) = 0. (20)

This set of homogeneous equations in the elongations u has non-trivial solutions, if the
determinant M of the matrix M with 6nt × 6nt elements

Me,kα = ∂�e

∂ ũkα

= deα
(
ρme δie,k − ρm′

e
δ je,k

)
(21)

vanishes. The index e of the edges denotes the rows; the indices k and α run independently
from 1 to 2nt and from 1 to 3, respectively, and number the columns of the matrix.

In general the determinant of M yields a complex number as a function of the ρk . Thus both
the real part and the imaginary part of M have to vanish. The determinant can be expanded:

M := det(M) =
∑

i jk

μi jkρ
i
1ρ

j
2 ρk

3 (22)

with real coefficients μi jk and integer i , j , k. Thus M(ρ∗
1 , ρ∗

2 , ρ∗
3 ) = M∗(ρ1, ρ2, ρ3) holds.

Therefore a vanishing M for some wavevector q also implies that it vanishes for −q.

4
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2.3. Inversion symmetry

We show that in the case of inversion symmetry M multiplied by an appropriate factor ρm is
real. Suppose that the centre of inversion is located at

RI = Ap =
∑

α

pαaα (23)

and denote the sublattice obtained by inversion from the sublattice i by I (i). (i may, but need
not, be identical to I (i)). Then

ci + cI (i) = 2p + li (24)

holds with integer lαi = lαI (i). Inversion is also applied to the edges, which generates I (e) from
e. Then the corners at the ends of the edges obey

i I (e) = I (ie), jI (e) = I ( je). (25)

Due to this inversion the two distance vectors add up to zero,

de + dI (e) = 0 (26)

with

de = cie + me − m′
e − c je , (27)

dI (e) = cI (ie) + mI (e) − m′
I (e) − cI ( je). (28)

Therefore one obtains

se := me + mI (e) + lie = m′
e + m′

I (e) + l je, (29)

which yields

m̃e + m̃I (e) = 0 (30)

with

m̃e = me + lie − se

2
, m̃I (e) = mI (e) + lie − se

2
. (31)

The matrix M̃ is introduced by

Me,kα = ρse/2ρ−lk/2 M̃e,kα, (32)

M̃e,kα = deα
(
ρm̃eδie,k − ρm̃′

e
δ je,k

)
. (33)

In rows e and I (e) the only non-zero matrix elements of M̃ are

M̃e,ieα = deαρm̃e , M̃e, jeα = −deαρm̃′
e
, (34)

M̃I (e),ieα = deαρ ˜−me
= M̃∗

e,ieα
, M̃I (e), jeα = −deαρ ˜−m′

e
= M̃∗

e, jeα. (35)

Therefore exchanging all pairs of rows e and I (e) will transform the determinant M̃ into (−)3nt

times the determinant in which all arguments ρi are replaced by 1/ρi (note that ρ−m = 1/ρm).
Since a tetrahedron does not transform into itself under inversion, inversion symmetry is only
possible for even nt. Thus

M̃(ρ1, ρ2, ρ3) = M̃
(

1

ρ1
,

1

ρ2
,

1

ρ3

)
. (36)

Since for real wavevectors q one has 1/ρi = ρ∗
i , one deduces

M̃ = M̃∗. (37)
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Thus M̃ is real for crystals with inversion symmetry. The connection between M̃ and M is
obtained from equations (31) and (32):

M̃ := det(M̃) = (ρ�m)−3/2M, (38)

(ρ�m)−3/2 =
∏

e

(ρse )
−1/2

∏

i

(ρli )
3/2. (39)

The sum
∑

m has to be extended over all vertices of all tetrahedra. Since each vertex belongs
to two tetrahedra, there are two contributions to each vertex.

Although relation (36) holds for crystals with inversion centre only, the transformation
from M to M̃ is also useful for lattices without inversion symmetry for the following reason:
the introduction of the m is to some extent arbitrary. One may add an arbitrary mc to m at all
corners of a given tetrahedron without changing the distance vectors d, m′ = m + mc. Then
in all six rows for the edges of this tetrahedron an extra factor ρmc appears, M′ = ρ6

mc
M.

Then one obtains
∑

m′ = ∑
m + 4mc and M̃′ = M̃. Therefore M̃ is invariant against

this arbitrary choice in contrast to M. The overall sign of M̃ depends on the sequence of the
vertices. Thus it is arbitrary.

As a consequence, crystals with inversion symmetry will show areas for RUMs in
reciprocal space, since only one condition has to be fulfilled. If inversion symmetry is lacking,
then both the real and the imaginary parts of M̃ have to vanish. Unless both conditions coincide
for whole areas, one obtains only lines for RUMs in reciprocal space.

2.4. Remarks on the calculation

The calculation is performed by means of the algebraic computer program MAPLE. If the
lattice is without an inversion centre, then M̃ is decomposed into its real part R1 and its
imaginary part R2. If besides the three factors ρk there are no other variables, then the
calculation of the determinant is extremely fast. If there is one extra variable like x in β-
quartz then it takes a few seconds. If there are three variables, like x2, y2, and z2 in α-
cristobalite and in α-quartz, then it takes up to the order of hours. However, if one assigns
rational fractions like x2 = 239 76/100 000, then it runs very quickly, whereas it takes quite
a while if one chooses decimal fractions like x2 = 0.239 76. Apparently the exact calculation
facilitates the calculation of the determinant, although it produces fractions with numerators
and denominators of enormous size. Then also factorization still works, whereas it does not for
decimal fractions due to rounding errors.

The degeneracy of the modes can easily be calculated for RUMs on planes or on straight
lines by determining the rank of the matrix M̃, since the corresponding restriction can easily
be evaluated. If the surfaces or lines are bent, then this is more difficult, since the constrained
ρk have to be given explicitly. In the following we will not determine the degeneracies.

The crystallographic data used here are those of [12]. They describe average atomic
positions, which are not necessarily the same as the instantaneous local structure. Indeed the
average positions are inconsistent with pair distribution functions [13]. This obviously is due
to the RUMs. Thus the present analysis gives the RUM spectrum of the average structure.

To the extent that the location of the RUMs is given by symmetry, there will be obvious
agreement between those determined in [1–3] and ours. For bent lines many agreements will be
found. In comparison three things have to be kept in mind. First of all the cited references give
only graphical representations. Therefore comparison is made by appearance only. Secondly,
unless the atomic coordinates are determined by symmetry, theirs may differ from the ones used
here. Thirdly, apparently Dove et al have included quasi-RUMs, that is regions in reciprocal
space with a low phonon frequency, whereas here only zero-frequency modes are taken into
account.

6
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3. Various SiO2 crystals

In the following, the RUMs for five polymorphs of SiO2 crystals are determined.

3.1. β-cristobalite

The coordinates c′ for the Si ions and c for the O ions are given by

i c′
i,1 c′

i,2 c′
i,3

1 1/8 1/8 1/8
2 −1/8 −1/8 −1/8

i ci,1 ci,2 ci,3

1 0 0 0
2 1/2 0 0
3 0 1/2 0
4 0 0 1/2

a1 = a
2 e2 + a

2 e3

a2 = a
2 e1 + a

2 e3

a3 = a
2 e1 + a

2 e2.

(40)

The corners of the two tetrahedra are obtained by applying A to
the first tetrahedron: c1, c2, c3, c4; and
the second tetrahedron: c1, c2 − e1, c3 − e2, c4 − e3.
The determinant evaluates to

M̃ = (1 − ρ1)(1 − ρ2)(1 − ρ3)(ρ1 − ρ2)(ρ1 − ρ3)(ρ2 − ρ3)

212ρ
3/2
1 ρ

3/2
2 ρ

3/2
3

. (41)

With equation (6) one obtains

1 − ρk

ρ
1/2
k

= −2i sin(akq/2) = −2i sin(πξk), (42)

ρk − ρl

(ρkρl)1/2
= 2i sin((ak − al)q/2) = 2i sin(π(ξk − ξl)). (43)

Thus all RUMs are located in the planes in reciprocal space

(0, η, ζ ), (ξ, 0, ζ ), (ξ, η, 0), (ξ, ξ, ζ ), (ξ, η, ξ), (ξ, η, η). (44)

The crystal has a centre of inversion. One easily checks equation (36) for this crystal.

Comparison. The planes of RUMs found agree completely with those given in [1].

3.2. HP tridymite

The atomic coordinates of the HP tridymite phase of SiO2 are given by

i c′
i,1 c′

i,2 c′
i,3

1 1/3 2/3 z
2 2/3 1/3 −z
3 2/3 1/3 1/2 + z
4 1/3 2/3 1/2 − z

i ci,1 ci,2 ci,3

1 1/3 2/3 1/4
2 2/3 1/3 3/4
3 1/2 0 0
4 0 1/2 0
5 1/2 1/2 0
6 1/2 0 1/2
7 0 1/2 1/2
8 1/2 1/2 1/2

a1 = 1
2 ae1 −

√
3

2 ae2

a2 = 1
2 ae1 +

√
3

2 ae2

a3 = ce3.

(45)

Equation (17) has to be fulfilled for the edges of the four tetrahedra with corners obtained by
applying A to
the first tetrahedron: c1, c3 + e2, c4, c5;
the second tetrahedron: c2 − e3, c3, c4 + e1, c5;

7
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the third tetrahedron: c2, c6, c7 + e1, c8; and
the fourth tetrahedron: c1, c6 + e2, c7, c8.
The determinant M̃ yields

M̃ = f 2
2 (ρ1, ρ2)

(1 − ρ3)

23232ρ
1/2
3

R, (46)

R = 9

(
ρ3 + 1

ρ3

)
− 4 f1(ρ1, ρ2) + 14, (47)

f1(ρ1, ρ2) = (1 + ρ1)(1 + ρ2)(1 + ρ1ρ2)

ρ1ρ2

= 8 cos(a1q/2) cos(a2q/2) cos((a1 + a2)q/2)

= 2(1 + cos(a1q) + cos(a2q) + cos((a1 + a2)q)), (48)

f2(ρ1, ρ2) = (1 − ρ1)(1 − ρ2)(1 − ρ1ρ2)

ρ1ρ2

= 8i sin(a1q/2) sin(a2q/2) sin((a1 + a2)q/2)

= 2i(sin(a1q) + sin(a2q) − sin((a1 + a2)q)). (49)

These functions, f1 and f2, as well as the later introduced functions f3, equation (65), and
f4, equation (108), are invariant under rotations by 2π/3 around the z-axis, which causes the
following transformation

a1 → a2 → −a1 − a2 → a1,

ρ1 → ρ2 → 1/(ρ1ρ2) → ρ1.
(50)

Due to the factor 1 − ρ3 in equation (46) RUMs are located in the plane

(ξ, η, 0). (51)

The factors of f2 yield RUMs in the planes

(0, η, ζ ), (ξ, 0, ζ ), (ξ,−ξ, ζ ). (52)

In contrast, the zeros of R describe a winding surface in reciprocal space, which may be written
as

cos(2πζ ) = 16
9 cos(πξ) cos(πη) cos(π(ξ + η)) − 7

9

= 4
9 (cos(2πξ) + cos(2πη) + cos(2π(ξ + η))) − 1

3 . (53)

Note that the maximum of the sum of the right-hand side (rhs) is +1, which is obtained at
[0, 0, 0]. The minimum of the rhs is −1, which is reached at [±1/3,±1/3, 1/2]. For ξ = 1/2
or η = 1/2 or ξ + η = 1/2 one obtains cos(2πζ ) = −7/9, which yields ζ = l = ±0.391 83.

Comparison. These results are in full agreement with those obtained by Dove et al [11] by
means of their numerical CRUSH program [7, 8] and reported in [1].

Other derivation. One may determine this bending RUM also in the following way. One
starts with the equations for the edges between c3, c4, and c5. Since they all lie in the xy-plane,
the third component does not enter, and one obtains the equations

ũ4,1 = ũ5,1, ρ1ũ4,1 = ũ5,1,

ũ3,2 = ũ5,2, ρ2ũ3,2 = ũ5,2,

ρ2(ũ3,1 + ũ3,2) = ũ4,1 + ũ4,2, ũ3,1 + ũ3,2 = ρ1(ũ4,1 + ũ4,2).

(54)

8
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Evidently, if

ρ1 �= 1, ρ2 �= 1, ρ1ρ2 �= 1, (55)

then all these components vanish:

ũ3,1 = ũ3,2 = ũ4,1 = ũ4,2 = ũ5,1 = ũ5,2 = 0. (56)

Similarly one shows by considering the third and fourth tetrahedra that under the same
condition (55) one obtains

ũ6,1 = ũ6,2 = ũ7,1 = ũ7,2 = ũ8,1 = ũ8,2 = 0. (57)

This implies that the tetrahedra are rotated around axes parallel to the xy-plane. There are 12
equations left for the 12 other components ũ. One can use six of them to eliminate ũ3,3 to ũ8,3.
Finally, one calculates the determinant of the coefficient matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− ρ3

6ρ2
− ρ3

3ρ2

ρ3

4ρ2

1
6

1
3 − 1

4
ρ1ρ3

3
ρ1ρ3

6
ρ1ρ3

4 − 1
3 − 1

6 − 1
4

− ρ3

6
ρ3

6
ρ3

4
1
6 − 1

6 − 1
4

− 1
6ρ2

− 1
3ρ2

− 1
4ρ2

1
6

1
3

1
4

ρ1
3

ρ1
6 − ρ1

4 − 1
3 − 1

6
1
4

− 1
6

1
6 − 1

4
1
6 − 1

6
1
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(58)

of the last six equations for the six components of ũ1 and ũ2, which has to vanish. This
determinant factorizes in factors ρ3 − 1 and

2

(
1

ρ1
+ ρ1 + 1

ρ2
+ ρ2 + 1

ρ1ρ2
+ ρ1ρ2

)
− 9

2

(
1

ρ3
+ ρ3

)
− 3

= 4(cos(a1q) + cos(a2q) + cos((a1 + a2)q)) − 9 cos(a3q) − 3 = 0, (59)

which again yields equation (53).

3.3. β-quartz

The coordinates for the Si and O ions are given by

i c′
i,1 c′

i,2 c′
i,3

1 1/2 0 0
2 0 1/2 2/3
3 1/2 1/2 1/3

i ci,1 ci,2 ci,3

1 x 2x 1/2
2 −2x −x 1/6
3 x −x 5/6
4 −x −2x 1/2
5 2x x 1/6
6 −x x 5/6

a1 = 1
2 ae1 −

√
3

2 ae2

a2 = 1
2 ae1 +

√
3

2 ae2

a3 = ce3.

(60)

The corners of the three tetrahedra are obtained by applying A to
the first tetrahedron: c2 + e1, c3 − e3, c5, c6 + e1 − e3;
the second tetrahedron: c1, c3 + e2, c4 + e2, c6; and
the third tetrahedron: c1, c2 + e1 + e2, c4 + e1 + e2, c5.
The determinant reads

M̃ =
(

4x(3x − 1)

9

)3 1 − ρ3

ρ
1/2
3

(R1 + R2) , (61)

R1 = 1 + ρ3

ρ
1/2
3

f2(ρ1, ρ2)

(
−k3

3

(
1 + ρ2

3

ρ3

)
+ k1 + k2 f1(ρ1, ρ2)

)
, (62)

9
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R2 = 2x(2x − 1)(3x − 1)(4x − 1)(6x − 1)
1 − ρ3

ρ
1/2
3

f3(ρ1, ρ2), (63)

f3(ρ1, ρ2) = (ρ1 − ρ2)(1 − ρ1ρ
2
2 )(1 − ρ2

1ρ2)

ρ2
1ρ

2
2

, (64)

k1 = 2x(4x − 1)(432x4 − 540x3 + 252x2 − 51x + 4), (65)

k2 = −x(4x − 1)(3x − 1)2, (66)

k3 = 12x2 − 6x + 1. (67)

Due to the factor (1 − ρ3), RUMs are obtained in the plane

(ξ, η, 0). (68)

The factor (1 + ρ3) in R1 and the zeros of f3 in R2 yield RUMs along the straight lines

[ξ, ξ, 1/2], [ξ,−2ξ, 1/2], [−2ξ, ξ, 1/2]. (69)

The zeros of f2 in R1 and of f3 in R2 yield RUMs along the straight lines

[0, 0, ζ ], [0, 1/2, ζ ], [1/2, 0, ζ ], [1/2, 1/2, ζ ]. (70)

Finally, the zeros of the term in the large parentheses in the expression for R1 and the zeros of
f3 in R2 yield RUMs along the curves

[ξ, ξ, ζ(ξ)], [ξ,−2ξ, ζ(ξ)], [−2ξ, ξ, ζ(ξ)], (71)

where ζ(ξ) is given by

cos(2πζ(ξ)) = k1 + 8k2 cos2(πξ) cos(2πξ)

2k3
3

. (72)

With x = 0.4202 of [12] one obtains

k1 = 0.267 99, k2 = −0.019 427, k3 = 0.597 62 (73)

and

cos(2πζ(ξ)) = 0.6278 − 0.3641 cos2(πξ) cos(2πξ). (74)

However, this value of x yields tetrahedra which are far from being equilateral. The value for
equilateral tetrahedra is1

x = 1

2
− 1√

12
= 0.2113, (75)

which yields

k1 = −0.015 801, k2 = 0.004 380, k3 = 0.267 95, (76)

cos(2πζ(ξ)) = −0.410 68 + 0.910 68 cos2(πξ) cos(2πξ). (77)

The function ζ(ξ) is plotted for both values of x in figure 1.

Comparison. We find agreement of the RUMs for β-quartz in reciprocal space with those
given in [11, 1–3]. This includes the winding lines of figure 1 seen in [2, 3] with the ideal value
x of equation (75).

1 The maintainers of the pages of [12] have been informed on this discrepancy and a correction has been suggested.

10
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Figure 1. ζ(ξ) of the RUMs of β-quartz given by equations (71) and (72) for x = 0.4202 and
0.2113.

3.4. α-cristobalite

The coordinates c′ for the Si ions and c for the O ions are given by

i c′
i,1 c′

i,2 c′
i,3

1 x1 x1 0
2 −x1 −x1 1/2
3 1/2 − x1 1/2 + x1 1/4
4 1/2 + x1 1/2 − x1 3/4

i ci,1 ci,2 ci,3

1 x2 y2 z2

2 −x2 −y2 1/2 + z2

3 1/2 − y2 1/2 + x2 1/4 + z2

4 1/2 + y2 1/2 − x2 3/4 + z2

5 y2 x2 −z2

6 −y2 −x2 1/2 − z2

7 1/2 − x2 1/2 + y2 1/4 − z2

8 1/2 + x2 1/2 − y2 3/4 − z2

a1 = ae1

a2 = ae2

a3 = ce3.

(78)

The corners of the four tetrahedra are obtained by applying A to
the first tetrahedron: c1, c4 − e3, c5, c7;
the second tetrahedron: c2, c3 − e1 − e2, c6, c8 − e1 − e2;
the third tetrahedron: c1 + e2, c3, c6 + e2, c7; and
the fourth tetrahedron: c2 + e1, c4, c5 + e1 + e3, c8.
The determinant reads

M̃ = k4
0(R1 + R2), (79)

R1 =
2∑

l=0

gl cosl(2πξ3), (80)

R2 = k ′ (1 − ρ2
1 )(1 − ρ2

2 )(1 − ρ2
3 )(ρ1 − ρ2)(1 − ρ1ρ2)

ρ2
1ρ

2
2ρ3

, (81)

gl =
∑

i j

ki jl cosi (2πξ1) cos j(2πξ2), (82)

k0 = 1
8 (2x2 − 1)(8z2y2 + x2 − y2) (83)

with

ki jl = k jil. (84)

11
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Figure 2. ζ(ξ) of the RUMs of α-cristobalite described by equations (88)–(90).

The sum over i and j runs at most up to i = 3, j = 3, i + j = 4. The coefficients ki jl are
polynomials in x2, y2, z2. They are of order 4 in z2 and of order 8 in x2 and y2. Thus in general
they are lengthy expressions.

For

x2 = 0.239 76, y2 = 0.103 24, z2 = 0.178 44 (85)

from [12] one obtains

k ′ = −0.000 527 47, k0 = −0.018 470, (86)

and the non-zero coefficients ki jl

i j 100ki j0

0 0 −8.0953
0 1 9.6093
0 2 9.4540
0 3 −10.9503
1 1 −8.4081
1 2 −7.3564
1 3 7.9854

i j 100ki j1

0 0 −0.7104
0 1 −3.7422
0 2 2.5622
1 1 −19.5336
1 2 18.3067
2 2 −15.9707

i j 100ki j2

0 0 8.8057
0 1 −5.8672
1 1 3.9092.

(87)

The zeros ρ1 = ±1, ρ2 = ±1, ρ2 = ρ1, ρ2 = 1/ρ1 of R2 yield RUMs for the zeros of R1

from

cos(2πζ(ξ)) = −g1 ± √
d

2g2
, d = g2

1 − 4g0g2. (88)

For ρ1 = 1 and ρ2 = 1 one obtains RUMs along the lines

[0, ξ, ζ(ξ)], [ξ, 0, ζ(ξ)], (89)

respectively, with

102g2 = 2.9385 − 1.9579 cos(2πξ),

102g1 = −1.8904 − 4.9691 cos(2πξ) + 4.8982 cos2(2πξ),

104d = (1 − cos(2πξ))2(3.3647 + 4.1431 cos(2πξ) + 0.7718 cos2(2πξ)).

(90)

They are shown in figure 2.
For ρ1 = −1 and ρ2 = −1 one obtains RUMs along the lines

[1/2, ξ, ζ(ξ)], [ξ, 1/2, ζ(ξ)] (91)

12
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Figure 3. ζ(ξ) of the RUMs of α-cristobalite given by equations (93), (94) and (96).

respectively, with

102g2 = 14.6729 − 9.7764 cos(2πξ),

102g1 = 5.5940 + 34.0981 cos(2πξ) − 31.7152 cos2(2πξ),

104d = −127.156 + 330.023 cos(2πξ) − 74.142 cos2(2πξ)

− 394.118 cos3(2πξ) + 265.367 cos4(2πξ).

(92)

The calculation with (85) did not give real solutions ζ(ξ).
For ρ2 = ρ1 and 1/ρ1 one obtains RUMs along the lines

[ξ, ξ, ζ(ξ)], [ξ,−ξ, ζ(ξ)] (93)

with

102g2 = (2.9674 − 1.9772 cos(2πξ))2,

102g1 = −0.7104 − 7.4844 cos(2πξ) − 14.4092 cos2(2πξ)

+ 36.6135 cos3(2πξ) − 15.9707 cos4(2πξ),

d = (2g2 + g1)
2.

(94)

The square root of d is rational in this case. The first solution (88) yields the straight line of
RUMs

[ξ,±ξ, 0]. (95)

The second one yields the relation

cos(2πζ(ξ)) = −1 − g1

g2
. (96)

The locations of these RUMs in reciprocal space are shown in figure 3.
The RUMs given by the zero ρ3 = 1 are the RUMs from equation (95) just mentioned plus

RUMs along the lines [ξ, η, 0] with ξ and η related by

cos(2πξ) cos(2πη) − A(cos(2πξ) + cos(2πη)) + B = 0, (97)

where for the above given x2, y2, z2 one obtains

A = 1.3713, B = 1.5048. (98)

The corresponding line is plotted in figure 4.

13
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Figure 4. η versus ξ of the RUMs of α-cristobalite given by equations (97) and (98).

Finally, the RUMs given by the zero ρ3 = −1 of R2 are given by the lines [ξ, η, 1/2] with
ξ and η related by

3∑

i, j=0

ki, j cosi (2πξ) cos j(2πη) = 0, (99)

which with (85) yields

15.9707 cos2(2πξ) cos2(2πη) + 7.9854 cos(2πξ) cos(2πη)(cos2(2πξ) + cos2(2πη))

− 25.6631 cos(2πξ) cos(2πη)(cos(2πξ) + cos(2πη))

− 10.9503(cos3(2πξ) + cos3(2πη))

+ 15.0347 cos(2πξ) cos(2πη) + 6.8918(cos2(2πξ) + cos2(2πη))

+ 7.4844(cos(2πξ) + cos(2πη)) + 1.4208 = 0. (100)

This can be rewritten as

c2
d = c4

s − 4.5851c3
s + 3.6089c2

s + 3.7491cs + 0.7117

c2
s + 0.9001cs + 0.1567

(101)

with

cs = cos(2πξ) + cos(2πη), cd = cos(2πξ) − cos(2πη). (102)

The numerical calculation showed that either c2
d from equation (101) is negative or one of the

cosines is larger than one. Therefore there is no real solution of this type.

Comparison. The figure for α-cristobalite in [2, 3] shows the RUMs of figures 2 and 4 and
the line equation (95) (green) for ξ, η, ζ � 0. The line figure 3 cannot be seen. However, a
region of quasi-RUMs (modes of small frequency) is shown, which probably hides the line of
figure 3.

14
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3.5. α-quartz

The coordinates of the Si and O ions in α-quartz are

i c′
i,1 c′

i,2 c′
i,3

1 x1 0 2/3
2 0 x1 1/3
3 −x1 −x1 0

i ci,1 ci,2 ci,3

1 x2 y2 z2

2 −y2 x2 − y2 2/3 + z2

3 y2 − x2 −x2 1/3 + z2

4 y2 x2 −z2

5 −x2 y2 − x2 2/3 − z2

6 x2 − y2 −y2 1/3 − z2

a1 = 1
2 ae1 −

√
3

2 ae2

a2 = 1
2 ae1 +

√
3

2 ae2

a3 = ce3.

(103)

The corners of the three tetrahedra are obtained by applying A to
the first tetrahedron: c1, c2 + e1 − e3, c5 + e1 + e3, c6 + e3;
the second tetrahedron: c2 − e3, c3 + e2 − e3, c4 + e3, c6 + e2 + e3; and
the third tetrahedron: c1 − e3, c3 + e1 + e2 − e3, c4 + e3, c5 + e1 + e2.
The determinant evaluates to

M̃ = k3
1(R1 + R2), (104)

k1 = 2(3x2 − 2)(−2x2 + 3z2x2 − 6y2z2 + 5y2)

9
, (105)

R1 = f2(ρ1, ρ2)
1 − ρ2

3

ρ3

(
k2 f1(ρ1, ρ2) + k3

1 + ρ2
3

ρ3
+ k4

)
(106)

R2 = 1 − ρ4
3

ρ2
3

(k5 f1(ρ1, ρ2) + k6)

+ 1 − ρ2
3

ρ3
(k7 f1(ρ1, ρ2) + k8 f1(ρ

2
1 , ρ

2
2 ) + k9 f4(ρ1, ρ2) + k10)

+
(

k11
1 + ρ2

3

ρ3
+ k12

)
f3(ρ1, ρ2), (107)

f4(ρ1, ρ2) = (ρ1 + ρ2)(1 + ρ1ρ
2
2 )(1 + ρ2

1ρ2)

ρ2
1ρ

2
2

, (108)

with lengthy polynomial expressions of x2, y2, z2 for the constants k2–k12. With

x2 = 0.4141, y2 = 0.2681, z2 = 0.7854 (109)

from [12] one obtains

k1 = −0.037 819, k2 = 0.018 997, k3 = −0.030 172,

k4 = 0.000 088, k5 = 0.006 248, k6 = −0.060 332,

k7 = 0.021 768, k8 = −0.009 082, k9 = −0.000 285,

k10 = −0.078 514, k11 = −0.006 089, k12 = 0.001 074.

(110)

From the zeros of R1 combined with the zeros of R2 one obtains three classes of solutions.
(i) f2(ρ1, ρ2) = 0 yields a class of RUMs

[ξ, 0, ζ(ξ)], [0,−ξ, ζ(ξ)], [−ξ, ξ, ζ(ξ)] (111)

where ζ(ξ) is determined by

R2(ρ1 = e2π iξ , ρ2 = 1, ρ3 = e2π iζ(ξ)) = 0. (112)
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Figure 5. ζ(ξ) of the RUMs of α-quartz described by equations (111) and (112).

Figure 6. The RUMs given by equation (115) shown in the (ξ, η)-plane and ζ versus ξ + η and
ξ − η, respectively, for α-quartz.

The solutions are shown in figure 5. One line of RUMs is nearly straight; the other one is snaky.

(ii) 1 − ρ2
3 = 0 and f3(ρ1, ρ2) = 0 yield straight lines of RUMs

[ξ, ξ, 0], [ξ,−2ξ, 0], [−2ξ, ξ, 0], (113)

[ξ, ξ, 1/2], [ξ,−2ξ, 1/2], [−2ξ, ξ, 1/2]. (114)

(iii) The condition

k2 f1(ρ1, ρ2) + k3(ρ3 + 1/ρ3) + k4 = 0, R2 = 0 (115)

yields the curve depicted in figure 6. This curve is not a planar curve. The projection onto
the ξη-plane is nearly a circle. In the ζ -direction it oscillates between −0.0433 and +0.0433.
Thus it stays close to the ζ = 0 plane. It can be approximately described as a function of the
parameter χ :

ξ = r(χ) sin

(
π

6
− χ

)
, η = r(χ) sin

(
π

6
+ χ

)
,

r(χ) = 0.3290 − 0.0035 cos(6χ), ζ = 0.0452 sin(3χ) + 0.0019 sin(9χ).

(116)
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This curve intersects with the lines of RUMs (113) at χ = kπ/3, and with the RUMs given by
the curves (111) at χ = π/6 + kπ/3 for integer k.

Comparison. Comparing the distribution of the RUM vectors for α-quartz given in [2, 3] with
the curves calculated here, we find agreement for the straight lines and the curves of figure 5.
We do not find the non-planar curve of figure 6, equation (116). Since figure 10 of [3] shows
only RUMs for positive ζ , this line should run through the dark regions of quasi-RUMs in the
figure.
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